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The familiar quartz crystal is modeled with the circuit shown below containing a series
inductor LM, capacitor CM, and equivalent series resistor ESR, all paralleled by a
capacitor C0. The subscript “M” used with L and C signify that these are motional
parameters.
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This is a two terminal device, something that has but a single port. The element can be
characterized by studying it with a network analyzer where it is placed between a
generator and a load. The scattering parameters are then measured. Detailed analysis is
then used to extract the four parameters. Alas, this is not possible for those of us
without a basement network analyzer and it is not very intuitive.

One can do a simplified analysis with a stable oscillator (usually a VXO) operating as a
signal generator with a very low source impedance and a very low load resistance. This
is shown below.
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The low source impedance has traditionally been generated with a transformer dropping
from 50 Ohms down to a source impedance from 3 to 12 Ohms. Pads are inserted to
further establish the impedance. Because the impedance is very low, the parallel
capacitance has little impact upon the voltage across the load and can be ignored, at least
for this simple analysis, leaving nothing but a series tuned circuit. The generator is
tuned to series resonance to produce a maximum output. Comparing this against a piece
of wire (a “through connection” to the network analyzer folks) allows the ESR to be
inferred from the insertion loss. If the generator is then tuned to one side and then to
the other to the – 3 dB points, one can measure a bandwidth. A loaded Q can then be
calculated. Comparison of this value with the inferred ESR plus the source and load
resistance allows the motional inductance to be calculated. This and the series resonant
frequency yield the motional capacitance. Parallel capacitance, C0, can be measured at
a low frequency well removed from an resonance with a simple capacitance bridge. I



presented some experiments using these methods in a 1982 QST. (See “A Unified
Approach to the Design of Crystal Ladder Filters,” QST, May, 1982.) The scheme has
been used in many others who have been building their own crystal filters.

Bandpass filters can be designed with relative ease using traditional methods if we
assume the crystals to be nothing more than series tuned circuits. A filter then takes on
the form shown below where the variable capacitors are usually just fixed elements
inserted to move all meshes to the same frequency, the filter center.
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This filter uses three sections. Knowing the motional capacitance allows one to calculate
the coupling capacitors C12 and C23 for a specified bandwidth, using a normalized
coupling coefficient for the filter response shape (Butterworth, Chebyshev, etc) that is
desired. Similarly, an end section Q can be calculated from a normalized end section
Q and the desired bandwidth. Knowledge of this Q and the motional inductance allows
one to pick termination values that will yield the termination resistance.

Alas, things are not as simple as we might like. The existence of C0 with our crystals
imposes restrictions. One is limited to narrow filters if using the so called ladder
topology depicted. The bandwidth is of the order of the difference between the series
and parallel resonant frequencies of the crystals. Even when building filters within the
allowed bandwidth limits, the parallel capacitance complicates the process.

Crystal Characterization with an Oscillator

Crystal ladder filters can be designed if one knows the motional parameters. Although
the network analyzer schemes are ideal, one can also do a good job with a crystal
oscillator. Such a circuit is shown in Fig 3.35 on page 3.19 of Experimental Methods in
RF Design. The circuit is presented in EMRFD with a simple equation for motional C,
but nothing is offered in the way of a hint about where the equation originated. That is
the primary goal of this note. This scheme was suggested by G3UUR in a letter.



Neglecting biasing details, the oscillator is shown in Fig 1 below.
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When this circuit is in oscillation, the load imposed by the transistor is fairly small and
can be ignored. The capacitor at the collector is just a bypass of large value and does
not impact the oscillator frequency. The parallel capacitors shown as Cp are large in
value compared with any of the capacitors in the crystal circuit. Typical values might be
470 to 1000 pF. Cs is a series capacitor that can be short circuited with a switch. A
typical value might be 33 pF. Throwing the switch might produce a 2 kHz shift with a
10 MHz crystal. Cs includes the parallel capacitance of the open switch, which can be
several pF.

The circuit used to calculate resonances from known motional parameters is presented in
Fig 2.
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This circuit includes the motional elements of the crystal.

Evoking the assumption that the Cp is very large and does not alter resonance, we arrive
at Fig 3.
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For the time being, assume that we can neglect the parallel capacitance, C0. This leaves
us with the simple circuit of Fig 4.
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This figure now includes an equation for the resonant angular frequency, ω4, where the
subscript 4 just represents the figure number. This represents the case where the switch
of Fig 1 is closed, removing Cs from the circuit.

Figure 5 shows the circuit with the switch open.
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Two capacitors are in series in this circuit, so they

have an effective capacitance Ce resulting in a slightly higher angular frequency  ω5.

Cs, the switched capacitance, is known from measurement. Similarly, we measure the
frequencies of oscillation with a counter.    This leave us with two equations for ω4 and ω5

in the two unknowns Lm and Cm.

If we subtract one equation from the other we obtain
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This simplifies to become
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But the motional L is related to the angular frequency with the switch closed shown in
Fig 4 above,
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This gives us two equations for 1/Lm. Eliminating Lm between them yields
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We now redefine the upper frequency as the sum of the lower and a frequency shift,
f5 f4  f

Using this form, and the usual definitions
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If we substitute these into the expression for Cm, we obtain
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There are two terms on the right side. One is just the integer 2 while the other is a ratio
of two frequencies. But recall that a typical value for δf is 2 kHz for f4=10 MHz. The
ratio is much less than 2, so we ignore it, which leaves
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

We have dropped the “4” subscript with the understanding that the crystal series
resonance is the defining oscillation frequency. The two oscillator frequencies are so
close to each other that it makes no difference which is used.

We chose to ignore C0 in this derivation above. The actual circuit is that of Fig 6,
below.
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This is just a redrawing of Fig 3. But C0 is merely in parallel with Cs. Hence, a better
form for the equation would be

Cm 2 Cs C0 
 f
f





Having motional capacitance, the motional inductance is easily calculated from the series
resonant frequency. Parallel capacitance, C0, is easily measured with a lower
frequency bridge. I usually use an AADE LC Meter. Alternatively, one can obtain an
approximate value with C0=220∙CM. This relationship follows from the physics of the
AT-Cut quartz crystal, but does not include capacitance of any package that might hold
the crystal. Perhaps a better guess would be C0=220∙CM +1 pF.

As mentioned earlier, the simple oscillator scheme for determining motional parameters
was suggested to me in a 1982 or 83 letter from Dr. David Gordon-Smith, G3UUR.
Jack Smith, K8ZOA, pointed out that I really needed to include parallel capacitance with
the switched capacitance in the formula for motional inductance. Thanks to both of
these experimenters.


