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Designing Narrow-Bandwidth Ladder Filters 
Wes Hayward, w7zoi,   April 7, 2019. 

Abstract:   The performance of radio equipment depends upon the filters included in the radio.  Especially 
critical are the narrow width bandpass circuits.   This note summarizes the design methods for filters using 
either LC or quartz crystal resonators.   Series and parallel LC circuits are included, as are the crystal LSB 
and USB ladders.  The filter designs are then illustrated with computer simulations.   

A personal aside:   I’ve spent a lot of time and effort in recent years with LC bandpass filters and 
lower sideband (LSB) ladder crystal filters.   I’ve not really considered the upper sideband ladder.    
My goal was to examine this circuit, beginning with the classic paper by Dishal.   Rather than 
merely presenting this work, it seemed to make sense to generalize and to compare and contrast 
the upper and lower sideband ladders.    Some of the simulations illustrate the way coupling and 
loading might be determined. 

My approach to crystal filter design has used a perturbation approach wherein the crystal is 
approximated by a LC resonator.  The general discussion includes the design of the LC filters as 
well as LSB crystal filters with the perturbation scheme.   Some approximations may be used in 
the filter designs and are always described.    However, the analysis, or simulations use no 
approximations.  They are exact, within the constraints of the simple linear models. 

None of the work presented here is new.   Rather, the note is merely presented as a collected 
illustration of some of the methods I’ve found useful. 

Some basic filter characteristics and terms. 

What is the meaning of narrow in RF filters?    A 1 or 2% bandwidth LC filter might be narrow.  A 200 Hz 
wide crystal filter with .004% bandwidth might also be “narrow.”   Hence, a meaningful definition for 
narrow must include the resonators used to build the filters.   A resonator is characterized by an unloaded 
Q, specified as Qu.   A bandwidth Bmin is related to Qu,    Bmin=f/Qu where f is the resonant frequency.    Bmin  
and f have the same units.   It is impossible to build a single resonator passive filter that is narrower than 
Bmin.  Filters with more than one resonator are further restricted.   An estimated filter minimum will be 
2Bmin for a circuit with 2 resonators.   Hence, LC resonators with Qu of 250 at 5 MHz could be used to 
build a double tuned circuit with a bandwidth of 40 kHz.   Loss will be high for these narrowest filters, 
with loss decreasing as design bandwidth increases.     Qu of 100,000 and beyond is common for crystals, 
so filters with lower bandwidths are possible.    The same Bmin constraints apply.  

This work is based upon so-called modern network theory first appearing in the 1950s.  Earlier, filters were 
designed using image parameter concepts.   Modern network theory has the following characteristics: 

1. Designs are low pass filters.   These prototypes are characterized by their transfer functions and by 
a cutoff frequency. 

2. The low pass prototype filters are usually described by well defined polynomial transfer functions.  
These expressions describe an output voltage for a specified input voltage.   
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3. The low pass prototypes can be transformed to allow arbitrary cutoff frequency and terminations. 
4. The prototypes can also be transformed to design high pass, bandpass, and band stop circuits. 
5. The low pass prototype filters usually consist of a table of normalized component values.   The 

number of components in the filter is commensurate with the order of the filter, which is the order 
of the polynomial that is the low pass transfer function.  Higher order leads to greater stop band 
attenuation. 

6. The low pass prototype filter can be used to examine the way energy is shared with the 
terminations and between elements in the prototype.    This analysis produces an alternative 
description of the filter consisting of the Q of end sections and coupling coefficients describing the 
interface between elements.    This new parameter set are end section normalized Q values and 
normalized coupling coefficients.   This new parameter set can be used to design a very wide 
variety of filter types.    Calculation of the “k and q” parameter set is described in an appendix. 

The purpose of this paper is to summarize the mathematics and perhaps impart some intuition.    Equations 
are presented with example data.    The numeric data will allow the reader to do the calculations as the text 
is read.   Calculations use fundamental units of Hz, Farad, Henry, etc, although we may often use practical 
components in text, such as capacitors in pF.    We assume that the reader will seamlessly make these 
transformations.      

There are no advanced mathematics here.   It’s just algebra, although often with imaginary (complex) 
elements.    

After filters are designed, they are analyzed with computer programs.   Some of the analysis is with 
programs we have written while others use SPICE.   This report does not include measured results.  An 
appendix presents more numeric detail for readers wishing to see such data.    Generally, we obtain 
excellent correspondence between filter simulation and physical measurements. 

Two filter orders (N=2 and N=4) are considered for each of the four resonator types.   The reader should 
then be able to extend the presentation to any order.   The key to this flexibility is found in the central 
design rules in section 2 below. 

Contents. 

The paper is divided into the following sections: 

1. A discussion of resonators and tuning. 
2. The central design rules. 
3. Terminations that load resonators.  Deriving the equations. 
4. A double tuned circuit with parallel LC circuits. 
5. A bandpass with 4 parallel LC tuned circuits. 
6. A double tuned circuit with series LC resonators. 
7. A N=4 bandpass with series LC resonators. 
8. A crystal filter of the LSB Ladder type with two crystals. 
9. A LSB Ladder crystal filter with N=4. 
10. A USB Ladder crystal filter with two crystals. 
11. A USB Ladder crystal filter with N=4.    
12. A Crystal Notch Filter, N=3. 
13. Bibliography. 
14. Appendix A, numeric examples.  
15. Appendix B, converting prototype components to k and q. 

1.  Basic Resonator Circuits. 

This section presents some schematic diagrams and some single stage filters.    There are no mathematics 
here, although the math to be presented later can be adapted to analyze these simple filters. 
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! Fig 1-1. 
A parallel tuned circuit places an inductor in parallel with a capacitor.   Both elements have their own loss, 
each represented here by a parallel resistance.    More often than not, we combine the two to form a single 
resonator parallel resistance, Rp, shown in the second part of Fig 1-1. 

! Fig 1-2. 
A series tuned circuit is show in Fig 1-2.   Again, the series loss resistances that model the individual 
elements are combined in a single resistance, Rs, that models the complete series tuned circuit shown in the 
lower part of Fig 1-2.    

Fig 1-3 models the way a filter might be used in a system.    

! Fig 1-3. 
The upper part of Fig 1-3 shows a source with internal resistance R-s followed by a load R-l.  The source 
has an open circuit voltage of V-s.      A filter circuit is inserted between the source and load, shown in the 
lower part of the figure.     
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! Fig 1-4. 
Two variations are shown in Fig 1-4 for using a parallel tuned circuit as a filter.   In the upper case, the 
reactive L and C must be carefully chosen with respect to the source and load.   L and C must resonate at 
the filter center frequency.   But the L (and hence, also the C) will be chosen to interact with the source and 
load resistances as well as the Rp which models resonator loss to establish a useful bandwidth.     Consider 
an example.   Source and load R are both set at 50 Ohms.   A small inductor of 1 µH resonates at 5 MHz 
with 1013.2 pF.   Assume, for the moment, that loss element Rp is very high and can be ignored.   The 
source and load are both 50 Ohms, so their parallel value is 25 Ohms.   The inductive reactance of L at 5 
MHz is 31.4 Ohms.    The loaded Q of this circuit is then 25/31.4, which is less than 1.    The heavy loading 
comes from the terminations.  This is a very wide filter, but still useful in some situations.    This filter 
bandwidth will be slightly more than the center frequency. 

The second part of Fig 1-4 shows a variation where series end capacitors Ce1 and Ce2 are placed in series 
with the source and load resistances.    A careful capacitor choice produces whatever loading we wish.   
This will then turn the filter into something with a much narrower bandwidth.    But the end capacitors will 
detune the original resonator from the initial value, so resonator C must be altered to maintain the original 
frequency. 

If we allow the resonator loss resistance, Rp, to take on practical values, we will see that this single parallel 
tuned circuit filter will have an insertion loss.   This can be calculated with methods that will follow.   

! Fig 1-5. 

The series tuned circuit form of a N=1 filter is shown in Fig 1-5.  (N is the number of resonators.) The 
upper half shows the source and load resistances in series with the reactive elements and series loss 
modeling resistance R-s.   In this variation, the higher the loading resistances R-s and R-l become, the 
lower the Q and the wider the circuit bandwidth.     The lower half of Fig 1-5 shows the common 
modification where shunt capacitors, Ce3 and Ce4, transform the usual terminations to “look like” lower 
values when considering loads for the resonator.    The equations for this transformation are presented later 
in Section 3.   
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2.  The Central Design Rules for Coupled-Resonator Filters. 

Modern network theory was mentioned earlier.    The low pass circuits that are the basis for our coupled-
resonator filters are all derived from characteristic polynomials.   For example, a Butterworth polynomial 
describes a low pass that is maximally flat at the origin, frequency=0 for a low pass.   (By maximally flat, 
we mean that the frequency derivative of the transfer function is zero at the origin.)  Another popular 
polynomial is that of Chebyshev, a shape that results from an approximation that asks for the lowest 
possible response in the stopband, but allows an equal ripple within the passband.   Filter enthusiasts refer 
to this as a “brick wall” shape.    These details are discussed in the references.    There are many other 
interesting and useful polynomials that are used.      Once a polynomial has been chosen, it will define the 
shape of the filter response.    It will also define a set of normalized low pass component values.      

The low pass prototype component values can be used directly to design low pass, high pass, and even 
some bandpass filters.    But most narrow band filter designs use an alternative set of filter design 
parameters, the so called normalized end section q and coupling coefficients.     For example, a Butterworth 
bandpass filter with four resonators (order N=4) would have the following parameters: 

q1 = 0.7654,   q4=0.7654,    k12=0.841,    k23=0.541,    k34=0.841.     

Every filter shape and order will have a corresponding set of parameters.     We emphasize that these are not 
different filters from the normalized low pass parameters, but are just a new set of values that are derived 
from the low pass elements. 

So, what do these parameters represent? 

First, these parameters are normalized.    This means that the most common low pass filter that is the basis 
for a bandpass is a circuit with a 1 radian per second cutoff and one ohm terminations.   A N=4 Butterworth 
low pass would have the normalized values of C1=0.7654 Farad, L2=1.85 Henry, C3=1.85 Farad, and 
L4=0.7654 Henry.    These normalized component values are converted to the k and q values shown above.  
(See Appendix B.)  Or the normalized L and C low pass values can be denormalized to form low pass or 
high pass filters.  

Denormalizing the k and q occurs with respect to a parameter called filter Q, or Qf.    Assume that we 
wanted to build a filter with a 5 MHz center frequency and a bandwidth of 0.2 MHz.     Qf is then 5/0.2=25.  
The other often used parameter is nodal capacitance, C0.     This is the capacitance value for the LC 
resonator forming the basis of the filter.    The details of the denormalization will emerge in the later 
sections. 

The normalized q is a value related to an input or output resonator.   Once the parameter is denormalized, a 
loaded Q for the resonator is established.    This is the Q of that resonator when loaded by the termination at 
the related end.     Recall Fig 1-3 where an arbitrary filter was terminated at both input and output by source 
and load resistances.    The end section Q for the first resonator is the result of loading by R-s, the source.      

The normalized coupling coefficients have a similar role.   The parameter k12, when denormalized, will 
specify the element that couples energy from the first resonator to the second.     

The central rule for filter design is then:     A filter shape is established when the end section Q values 
and the couplings between resonators are established.    Passband shape does not depend upon how 
we realize the coupling and loading.    Many different circuits may be used, but once the 
denormalized K and Q values are established, the filter shape close to the center frequency is 
determined.    This rule will be illustrated in the sections that follow.     

3. Terminations that Load Resonators, Series to Parallel and Back… 

The central rules stipulate that we must establish a specific end section Q to realize a desired filter shape.    
This section will derive the important equations that are used in later designs to obtain desired loading 
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values.    The equations presented are essentially transformations between parallel and series circuits.   5 
MHz examples are used.   Some capacitor values will be specified, but these are merely used for the 
numerical calculations.   The important outputs of this section are the formulas.   The initial parameters for 
examples are: 

!  

Two capacitor values, C and c, are specified.   We will use C to deal with a series circuit of R and C.   Later, 
a parallel R and c will be analyzed.    We begin with the impedance of the series RC of Fig 3-1. 

!   
Fig 3-1.  Ce=100 pF at 5 MHz and R =50. 

!    Eq. 3-1. 

Lower case i is the square root of minus 1.    This equation expands to yield 

!  Eq. 3-2. 
We have converted the impedance Z to an admittance, Y.   Continuing, Y is resolved into real and 
imaginary parts, G and B, 

! Eq. 3-3. 
G is a conductance while B is a susceptance.     Further expansion yields 

! Eq. 3-4. 
G may be inverted to obtain an equivalent parallel resistance.    If we were to write the susceptance of a 
parallel capacitor, it would be B= ω Cp where Cp is the parallel capacitance and ω is the angular frequency.  
Hence, Cp = B/ ω.     The resulting equations are 

!  Eq. 3-5. 
Recall that R=50 and C was 100 pF, resulting in 5 MHz calculated results 
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!  Eq. 3-6. 
The series capacitor has readily created a resistance much higher than the original 50 Ohms.  The 
equivalent parallel capacitance Cp is close to, but still less than the original 100 pF. 

We rewrite Eq 3-5 by defining the parallel resistance to be Re.    The subscript e emphasizes that this is an 
end resistance.    

!  Eq. 3-7. 
Note that Eq. 3-7 includes a definition for the reactance of the series capacitor.   This becomes useful, 
leading to 

! Eq. 3-8. 
This heads to the simple form. 

! Eq. 3-9. 
Extracting the value of the capacitor produces 

! Eq. 3-10. 
For example, say that we needed a resistance of 3000 Ohms across the resonator to achieve the desired end 
section Q, but we had R=50 at the other end.   The required capacitor from Eq. 3-10 is then 

! Eq. 3-11. 
We also need to know the equivalent parallel capacitance across the newly generated 3000 Ohms.  This is 
given by Eq. 3-5, repeated here 

! Eq. 3-12. 
The shunt 81.5 pF is close to, but not quite equal to the series end capacitance, 82.9 pF.     
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In the analysis above we were able to create a large resistance load with a series capacitor.   Next we 
consider the case of adding a parallel capacitor to a load to generate the equivalent of a lower resistance. 
This is shown in the next figure.   Lower case c represents capacitors merely to distinguish from the earlier 
case. 

!  
Fig 3-2.  R=50 and ce=c=500 pF for the numeric example. 

We begin by writing the admittance for the parallel RC. 

! Eq. 3-13. 
But impedance is just Z=1/Y, 

! Eq. 3-14. 
The real part of z is just the end resistance that will load the end resonator, 

! Eq. 3-15. 
But this is not the form we want.   Rather, we wish to specify a value for r<R and then calculate the value 
of c that will yield that result.   We solve Eq. 3-15 for c with the following sequence, 

! Eq. 3-16. 

! Eq. 3-17. 

! Eq. 3-18. 
Cleaning things a little yields a “standard form,” 

! Eq. 3-19. 
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This value of parallel end capacitor gives us the required end resistance.   We seek the equivalent series 
capacitance that will contribute to resonator tuning.  We focus on the imaginary part of Eq. 3-14, 

! Eq. 3-20. 

! Eq. 3-21. 
Solving for cs while inserting an “e” subscript for later clarity yields 

! Eq. 3-22. 
Finally, consider an example where we wish to generate a 5 ohm load with a capacitor and 50 ohm 
termination. 

! Eq. 3-23. 
These transformations will be applied in the filter designs that follow. 

4.  A Double Tuned Circuit with Parallel Tuned LC Resonators. 

Now that some of the preliminary details are out of the way, it’s time to design a filter.    Our first choice is 
a 200 kHz wide double tuned circuit at 5 MHz using parallel resonators.   The schematic follows. 

! Fig 4-1. 

The parameters for our filter are 

!  
The Butterworth parameters are the k12 and q values shown while the center frequency is 5 MHz.   We pick 
inductors of 3 µH with an unloaded Q of 200.   The bandwidth was specified to be 200 kHz and the filter 
source and load will be 50 Ohms.   The angular frequency is  
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! Eq. 4-1. 
The nodal capacitance C0 is the capacitance that resonates with the inductor that we have picked. 

! Eq. 4-2 
The filter Q is given by 

! Eq. 4-3. 
This filter Q is relatively low compared with the unloaded resonator Q, so this filter will be easily realized.  
A useful parameter is one we term the “normalized Q,” signified by q0 and defined as 

! Eq. 4-4. 
If q0 is more than 2, a double tuned circuit is usually practical.   Later we will see that q0 can be used to 
calculate insertion loss.   

The end Q is 

! Eq 4-5 
Note that the normalized filter q is denormalized by multiplying by filter Q, QF.   If the bandwidth was 
higher,  QF would be lower and Qend would be lower.    Equation 4-5 is a first approximation and it does not 
account for the intrinsic loss in the resonator specified by Qu.    A more complete expression is 

! Eq. 4-6. 
A coupling coefficient for a practical filter element is the normalized value divided by filter Q.   The 
coupling capacitor is then the nodal capacitance multiplied by the coupling coefficient.    Hence, the 
coupling capacitor is calculated with 

! Eq. 4-7. 
We have already calculated the denormalized end section Q = Qe.    This allows us to find the end resistance 
needed to properly load the resonator. 

! Eq. 4-8. 
A series capacitor Ce is placed in series with the 50 ohm loads at each end of the filter to transform the low 
resistance to look like Rpe at the resonator.   This calculation uses Eq. 3-10 derived above, 

! Eq. 4-9. 
The final detail is resonator tuning.   We started with a nodal C0=338 pF, that has been diminished because 
of the ~10 pF capacitor coupling between resonators and by the 71 pF loading capacitors.   We tune the 
resonators with  

! Eq. 4-10. 
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Note that this is still an approximation.   A more refined equation was derived above (Eq. 3-12) if greater 
accuracy is needed.    It would not make much difference in this case.   Moreover, we would probably use 
trimmer capacitors as part of the resonators in a practical circuit, so a small approximation is allowed. 

Finally, we calculate the filter insertion loss.    

! Eq. 4-11.    
The loss depends upon the normalized Q, q0, as well as the q value, here the end Butterworth q.   The 
insertion loss is in dB.    

A computer simulation of this filter is shown below.   This is an analysis using the ladder method, outlined 
in our IRFD text book.    This is an analysis program that is independent of the design above.     

!  
Fig 4-2.   An analysis of the 5 MHz double tuned circuit with parallel resonators.   Note that the insertion 
loss corresponds to the value from Eq. 4-11. 

5.  N=4 Bandpass Filter with Parallel LC Tuned Circuits. 

The next filter is just like the earlier double tuned circuit, but now contains four parallel resonators.   The 
same methods are used for end loading and for coupling as we used with the simpler double tuned circuit of 
section 4.    The approximation used for tuning with the previous double tuned circuit is replaced with a 
better method.   Again, we use Butterworth k and q parameters.   The set-up data and equations are 
presented below.   We picked a 6 µH inductor for this 5 MHz filter, but that is open to the designer. 

!  
Next, we calculate the nodal capacitance and the filter Q: 

! Eq. 5-1.               ! Eq. 5-2. 
The end Q is calculated from the filter Q, 

! Eq. 5-3. 
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This calculation includes both the normalized Butterworth end q and the unloaded resonator Qu.     

The next calculations are for the coupling capacitors. 

! Eq. 5-4.           ! Eq. 5-5.          ! Eq. 5-6. 
Note the symmetry with k12=k34, leading to C12=C34.    This is a common occurrence with Butterworth and 
Chebyshev filters. 

Having calculated Qend, we can now continue with the end loading determinations. 

! Eq. 5-7.                ! Eq. 5-8.    
This give us the capacitance value needed at the filter end to load resonators 1 and 4 with 50 Ohms.   But 
the parallel capacitance that is presented to these resonators must be determined before tuning.    The 
equation for this was derived in section 3.     The parallel capacitance is given by 

! Eq. 5-9. 
This capacitance, 70.8 pF, is close to the end C value of 71.7 pF.    This is the usual situation when Ce 
generates a large impedance transformation.    In this case we go from 50 to almost 4000 Ohms.   The 
capacitors are not as close to each other with a smaller transformation, which we might have with a wider 
bandwidth filter.      We can now tune the filter. 

!   Eq. 5-10              ! Eq. 5-11 

! Eq. 5-12                                        ! Eq. 4-13 
We again take advantage of the symmetry that comes from the equally terminated Butterworth filter.  Even 
without this symmetry, the formulas for T3 and T4 should be obvious.  

Figure 5-1 below contains the transfer function for the filter we just designed.   The schematic is also 
included.    This is an LT-SPICE analysis rather than one using our “homebrew” software.    Filter analysis 
is, after all, divorced from the filter design. 
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!   
Fig 5-1.   The classic Butterworth shape is evident.    A simulation must be used to evaluate the insertion 
loss, for we lack a simple formula like we had with the double tuned circuit.    Series resistors have been 
included with the inductors in the simulation to represent the unloaded Q of 200.   Alternatively, parallel 
resistors could be used. 

!   
Fig 5-2.   This filter is a special case, although this is not evident without careful inspection.   There are two 
special features.    First, the output resonator is terminated in 3K rather than 50 Ohms.   Note that the filter 
performance is essentially unchanged, for the end section Q has been maintained.     The second feature is 
the use of unequal inductors.   Resonators 1 and 2 use 2 µH while #3 and #4 use 6 µH.    The end 
calculations preserve end section Q.   The coupling between resonators 2 and 3 is the unusual case owing to 
unequal inductors.   The calculation is still straight forward.   The nodal C values for each resonator are 
calculated.   The geometric mean of the two C0 values is evaluated and used to calculate the coupling 
capacitor, C7 in the above figure. 
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!  
Fig 5-3.  This circuit and plot shows how the same simulation, with just a modification or two, can be used 
to evaluate the end Q of a loaded resonator.    Note that resonator 2 is short circuited.   Hence, the coupling 
capacitor C6 in the above circuit continues to be part of the overall C to tune resonator 1, but all details 
related to resonators 2, 3, and 4 disappear.   The end loading cap is attached to a termination, but the 
resonator is not excited with Cend.    Two “probes” are attached only to the first resonator through VERY 
small capacitors, 0.1 pF.   One probe comes from the RF source while the other goes to a detector.   The 
sweep serves to measure the Q of the resonator.   If we did not have the 50 ohm load and  Cend, we would 
see a very narrow peak.   This could be used to actually measure unloaded resonator Q.  But the resonator is 
loaded to Qend which is the value we would obtain from the swept response shown. 

This computer simulation used a 50 ohm load and another 50 ohm detector, attached via very small 
capacitors, suggestive of the scheme we might use in a physical measurement.   For a pure computer study, 
a current source could drive the resonator while the voltage is merely noted and plotted.  Neither element 
will load the circuit.    My personal preference is to emulate the physical measurement, but either method 
will provide the needed information. 

The scheme is one that is often used for physical measurements.   The very small capacitors in the 
simulation can be approximated with any manner of small “real world” capacitor.    The scheme used 
depends upon the frequency.  The key is to use identical “caps” at both probes and to guarantee that there is 
an insertion loss of at least 30 dB through the measurement setup.   If these criterion are met, it should be a 
good measurement.   Note that this “rule” can be tested with computer simulation. (This is NOT lore.) 
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!   
Fig 5-4.   This simulation shows how we might measure coupling between resonators.   The setup is just 
like that used above to measure the loaded Q of an end section.   A resonator is excited with a probe and 
another is used to measure the voltage across the same tuned circuit.   In this example, the two probes are 
attached to resonator #2.   We have short circuited resonators #1 and #4, so the tuning of resonators 2 and 3 
is preserved.   Sweeping the system of two probes attached to #2 shows the coupling from 2 to 3, indicated 
by a double hump response.   If coupling capacitor C7 is increased, the separation between peaks will 
increase.     This behavior is specified by 

! Eq. 5-14  

The frequency spacing δf23 is related to the filter bandwidth and the normalized coupling coefficient, k23.     
When we zoomed in to do a careful look at the peaks, we confirmed this calculated result.    Equation 5-14 
can be used to measure a coupling coefficient.    

The methods presented here are very powerful, for they show how computer simulation can be used to 
study circuit behavior and fundamental concepts.    But this is not a measurement.   An actual physical 
measurement will often take less time, but provide more information.   The physical examination includes 
the effects of stray L and C as well as loss.    When dealing with filters, there are three levels to the 
problem:  design or synthesis, analysis or simulation, and physical measurement.    The best filter circuits 
should have good correspondence between all three.    Don’t skip any of the steps.     Especially avoid the 
trap of assuming that a computer simulation can erase the need for physical measurement. 

 6. Double Tuned Circuit using Series Resonators 

The next design example is for a DTC using series tuned circuits.   The schematic is shown below. 
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!  Fig 6-1. 
The set up details are given with 

!     
We continue to design filters with a 200 kHz bandwidth at 5 MHz with unloaded resonator Q of 200.  The 
same Butterworth coefficients are used.    This example uses 7 µH inductors.    The design begins with 
calculation of the nodal capacitance, 

! Eq. 6-1. 
Next, we calculate the coupling capacitor and the end section Q.   The coupling cap is now a large valued 
shunt element. 

! Eq. 6-2.        ! Eq. 6-3.     !   Eq. 6-4. 
This low value series R is realized from a 50 ohm termination with a shunt end capacitor, 

! Eq. 6-5. 
While this value generates the transformation, this is not the series capacitor that results from a parallel to 
series conversion.   The equivalent series value is 

! Eq. 6-6.    These equations were derived in Section 3. 
This Ces value allows tuning of the first resonator with T1. 

! Eq. 6-7. 
The second resonator is identical to the first one. 

The response of the double tuned circuit with a series LC is almost identical to the one using parallel 
circuits.   The one with the series tuned circuits will drop off a little faster on the high frequency side.  The 
two are compared below. 
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!  
Fig 6-2.   Comparison between DTCs using series versus parallel tuned circuits.   Both filters have a 200 
kHz bandwidth centered at 5 MHz with inductors having an unloaded Q of 200.   The insertion loss is the 
same for both cases. 

7.  N=4 Bandpass Filter with Series LC Tuned Circuits. 

Having designed a DTC with series resonators, we now consider a higher order circuit with four resonators.   
The “set-up” details follow.   This example uses 12 µH inductors and retains the Butterworth shape. 

!  

!  
Design begins by calculating the nodal capacitance and then the three coupling values. 

! Eq. 7-1 

!   Eq. 7-2.            !   Eq. 7-3             ! Eq. 7-4 
Next we calculate the end Q and the related series resistance. 

! Eq. 7-5.                           ! Eq. 7-6. 
The end resistance is generated from a 50 ohm termination with a shunt end capacitance, with the related 
series capacitance needed to calculate tuning. 

! Eq. 7-7.               ! Eq. 7-8. 
We can now tune the filter. 
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! Eq. 7-9.                             ! Eq. 7-10. 

! Eq. 7-11.                  ! Eq. 7-12. 

!  
Fig 7-1.   Schematic diagram for the finished design.   This is a partial screen of a schematic editing 
computer program used to generate the file for the plot that follows.       The simulated response for this 
filter is shown below. (Ignore the crystal parameters in Fig 7-1, for this filter uses no crystals.) 

!  Fig 7-2. 

8.  Crystals, Crystal Filters, a N=2 Lower Sideband Ladder 

We continue the quest to design filters, but now move to circuits using the quartz crystal.   Fig 8-1 shows 
the familiar model for a quartz crystal.    The crystal model has a very high motional inductance, Lm, that is 
tuned to a series resonant frequency, fs, with a motional capacitance, Cm.    The loss is modeled with an 
equivalent series resistance, ESR.   The series resonator is bridged by a parallel capacitance, C0. 
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!  
Fig 8-1.   The approximate model is the series resonator portion of the more complete model.   This model 
will be used for filter designs. 

The model components can be inferred from a network analyzer sweep.    If the crystal is treated as a series 
element, an analyzer sweep will produce an amplitude response as shown in Fig 8-2.    

!  
Fig 8-2.   Network analyzer sweep of a crystal as a series element. 

The crystal used for the sweep of Fig 8-2 has the parameters shown below.   The inductor units are Henry. 
The motional capacitance, just over .01 pF, is the value that tunes the series arm of the model to the series 
resonant frequency of 5 MHz.   It is important to calculate Cm with precision, for this will determine the 
filter response when simulated.    Cm for this crystal is 10.132 fF, or .010132 pF.    

!  
The parallel resonant frequency is give by 

! Eq. 8-1, 7.7 kHz above series for this example. 

Our first crystal filter will be a 300 Hz wide Butterworth with the N=2 parameters of k12=0.7071 and 
q=1.414.  We use a 200 ohm termination. This filter is of a form called the Lower Sideband Ladder.  This 
filter has a symmetric shape when the bandwidth is narrow.   However, as bandwidth increases, the filter 
will tend to pass frequencies below parallel crystal resonance with poor low frequency attenuation, but 
excellent stopband attenuation above parallel resonance.   The LSB Ladder circuit uses the crystals as series 
elements. The motional capacitance, central to filter designs, is given by 
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! Eq 8-2 

! Eq 8.3. 

! Eq. 8-4. 

! Eq. 8-5. 

! Eq. 8-6. 

! Eq. 8-7. 
Cend is a shunt capacitance.   This combines with the terminating resistance to form an equivalent series RC 
with a capacitance of Ces and resistance Rs. 

! Eq. 8-8. 
The total capacitance in one node will allow us to calculate that resonant frequency of that node.  This then 
determines the filter center frequency. 

! Eq. 8-9. 
The resonant frequency becomes 

! Eq. 8-10. 
This is 190 Hz above the crystal series resonance. 

The filter is designed, so it’s time for analysis.    

!  20



!  !  
Fig 8-3.  Two plots are shown.   The red one is the filter with pure series resonators.  That is, C0 is set to 
zero.  This was the element used for the design.   The black trace shows the response when the 3.3 pF 
parallel capacitors in the more complete crystal model is included in the analysis.     There is a small, but 
detectable difference.  The schematic is shown to the right of the plot. 

The bandwidth was changed from 300 Hz to 1 kHz in the next design,. 

!  
Fig 8-4.  The two plots for the 1 kHz wide filter are similar to the previous figure showing the response 
with and without crystal parallel capacitance.   The parallel C now has a greater impact on the results. 

The final double tuned circuit crystal filter has a bandwidth of 2500 Hz, but still with a 5 MHz center. 
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!  
Fig 8-5.   The 2500 Hz BW filter becomes much narrower when the C0 is included in the analysis.  
Moreover, the characteristic lower sideband ladder shape is becoming more apparent.  The high frequency 
skirt is becoming steeper while that on the lower frequency edge is degraded.     

9.  A N=4 Lower Sideband Ladder Crystal Filter 

The next example is a LSB Ladder crystal filter.   We continue our family of 5 MHz circuits with a filter 
bandwidth of 1 kHz.  Most of the design is like the double tuned circuit, but some tuning details emerge 
with the higher order.   Crystal details and Butterworth parameters are 

!  

! Eq. 9-1        ! Eq. 9-2 

! Eq. 9-3.  ! Eq. 9-4  ! Eq. 9-5. 
The coupling capacitors are now defined, leaving the ends to be specified. 

! Eq. 9-6.   ! Eq. 9-7.   !    Eq. 9-8. 
All of the shunt capacitors are now specified.   This is shown in part A of the schematic, Fig 9-1 below.  But 
there is more to do.   Using the previously examined equations, the series C resulting from our parallel to 
series transformation is 

! Eq. 9-9.      ! Eq. 9-10     ! Eq 9-11. 
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Equations 9 and 10 give us the series capacitance and the net C of the first mesh.  These allow calculation 
of the resonant frequency of mesh #1.   This is shown in Fig 9-1B.  We have defined C1 as the net C related 
to mesh #1.    When calculating a frequency of a mesh, all other meshes are open-circuited.   The result is 
then 

! Eq. 9-12.      ! Eq. 9-13. 
     The first and last meshes are resonant 745 Hz above crystal fs. 

! Fig. 9-1. 

The next step is to evaluate the resonant frequency of mesh #2, shown in Fig 9-1D.  We define the total 
mesh capacitance as C2.    Mesh frequency can then be calculated. 

! Eq. 9-14.          ! Eq. 9-15. 
The usual Butterworth symmetries apply, so all mesh frequencies are known.   We compare them all and 
note that the highest is mesh 1 (and 4).   Meshes 2 and 3 are just a bit lower.   The filter will be properly 
tuned when all meshes are resonant at the same frequency when they are isolated from the others.   

! Eq. 9-16.              ! Eq. 9-17. 
With the highest frequency specified, we can calculate the total capacitance  needed in any other mesh in 
order to tune that mesh.    In this specific example, we need only apply this for mesh 2.   Mesh 3 will then 
be identical and nothing needs to be done with #1 or #4, for they are already at the high frequency.   In a 
higher order filter with N>4, the equation must be applied to all meshes that are not “highest.” 
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! Eq. 9-18.         ! Eq. 9-19. 

The tuning is now done and our final circuit is the filter shown in Fig 9-1B where 470 pF capacitors have 
been inserted into meshes 2 and 3.   The schematic is shown in the figure below. 

!  Fig 9-2 

The response for this filter is presented in Fig 9-3. 

!  Fig 9-3. 

We see the same behavior that we saw with the N=2 filters.   We design as if the crystals were pure series 
resonators, but then simulate the filter with crystals that include C0.    The desired Butterworth shape is 
obtained, but the bandwidth is narrower than desired.   In this case, the bandwidth is lower by a factor of 
1000/817=1.224.    If we design a filter with bandwidth 1224 Hz, hoping to get 1000 Hz, we may do better.    
That is exactly what we did and it nearly worked.   The new filter, shown below, had a bandwidth of 980 
Hz, an insertion loss of 1.13 dB, and a Butterworth shape.    

!  
Fig 9-4.    The new filter has different shunt capacitors throughout.   Moreover, the tuning changed.   The 
highest frequency meshes are now #2 and #3, so capacitance had to be inserted in meshes #1 and #4 to 
achieve tuning.    
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Sidebar 

The lower sideband ladder topology is extremely powerful, but we often want a better way to do 
the design than the iterative scheme applied above.   Repeated iteration may converge nicely and 
should be considered.    Several years ago we tried an alternative scheme.     We started with an 
ideal series resonator using the motional inductance that fit the crystals to be used in our filter.   
LM had been measured using the now well known G3UUR method.   The ideal series tuned circuit 
was mathematically evaluated to obtain the reactance slope, the rate of change of reactance with 
frequency.   This slope is a measure of the inductance in the resonator. 

Then we calculated the reactance as a function of frequency for an actual crystal, a series resonator 
that includes the parallel capacitor.    This allows calculation of an effective inductance based 
upon the rate of change of reactance.    The function that came out of the differentiation is itself 
frequency dependent.   We found that we got the best bandwidth results when the effective 
inductance function was evaluated at the high frequency end of the desired passband.     This 
method was the basis for many of our crystal filter design programs distributed with publications.   
The method had been described in QEX, in a reference included in the bibliography.  

10.  An Upper Sideband Ladder N=2 Crystal Filter. 

Most crystal filters built or purchased by RF electronics experimenters have used the LSB ladder circuit.   
There is a second filter type, the so called Upper Sideband (USB) Ladder which uses crystals as parallel 
resonators.   A schematic is shown below for a N=2 filter. 

!  
Fig 10-1.   Crystal filter with crystals as parallel tuned circuits.  

This filter is termed the USB Ladder, for the dominant passband is above a carrier frequency.   The 
attenuation is high below that carrier, often at the price of attenuation above the passband.    These shape 
details will be appreciated after some example filters have been designed and presented.   The next figure 
shows the crystal model in the parallel configuration.     

! Fig 10-2.   A crystal as part of a USB Ladder Filter. 

Recall earlier Figure 8-2 that showed the response of a crystal configured as a series element.   The 
dominant path through the crystal was at series resonance where the motional L and motional C resonated 
with each other.    Parallel resonance occurs when the motional inductance resonates with the series 
combination of the motional and parallel capacitances.      At frequencies between fS and fP, the series 
combination of LM and CM, will have an inductive reactance.    Hence, a parallel tuned circuit can be built 
with a net parallel capacitance, P.   This is Fig 10-2A.     We are restricted to the frequency range between fS 
and fP.   If we tried to operate at a resonant frequency below fS, the series pair would look capacitive.    
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Operation close to or above parallel resonance would also bring us into a capacitive region.    Crystal 
parallel capacitance C0 is absorbed as part of P. 

The left side of the figure, A, represents the way we will assemble the elements in our circuit.   However, 
Fig 10-2B represents the familiar circuit topology where the inductor in a resonator is tuned with a 
capacitance, now the series combination of CM  and P.    Note that P will usually be several pF, for it will 
include the crystal C0 and whatever other C we might add to build the filter.   Motional CM is very small, 
around .01 pF in our examples.  If we have a voltage V across the internal resonator, as shown in Fig 
10-2B, the voltage at P will be reduced by a factor S where S is the capacitance ratio, (P+ CM )/ CM .    
With this correction in mind, we can now design our filter.    We will use the close approximation of S=P/ 
CM. 

The USB Ladder uses slightly different methods than those used for the LSB Ladder.   The familiar LSB 
circuit used the motional capacitance as the nodal capacitance.   This was used to calculate coupling 
capacitors as well as the elements needed for end section loading.    After these calculations, the various 
meshes in the filter were tuned by adding series C to one or more meshes.   Tuning was proper when each 
mesh was at the same frequency with the others open circuited.   The approach with the USB filter is 
different:  Each node must now resonate at the filter center frequency when the other nodes are short 
circuited.     Looking at the filter circuit, Fig 10-1, we see that capacitor P takes the place of nodal capacitor 
in an LC filter with parallel resonators.   (The reader may want to go back and review the parallel resonator 
LC Double Tuned Circuit of Section 4.)    Capacitor P will include C0, coupling capacitors to adjacent 
nodes, and the added capacitance T that might be needed to tune the resonator.    The nodal C needed for 
resonance is determined and used to calculate the other parameters.   Final tuning removes capacitance 
from the nodes to achieve resonance at each node. 

Our first example, a double tuned circuit, will use 5 MHz crystals to build a 300 Hz wide filter.   The same 
crystals used for some LSB examples will be used.   The setup details are 

!  
We begin by calculating the crystal parallel resonant frequency from the series resonance, 

! Eq. 10-1.   
This 5 MHz crystal is parallel resonant 7.7 kHz above the series resonance.    A filter center frequency, fC, 
is picked to be 3 kHz above series resonance.    This is about half way between crystal resonances.    The 
angular frequencies are calculated and used to evaluate motional capacitance and to calculate the nodal 
capacitance for the new resonators. 

! Eq 10-2.     ! Eq 10-3.      ! Eq. 10-4 
With this data, we can now calculate the nodal capacitance.   This is only a few pF, but is still very much 
larger than the motional capacitance within the complex resonator. 

 ! Eq 10-5 
The next crucial element is the correction factor S discussed above.   The approximate form is 

! Eq. 10-6. 

We next calculate the details related to end loading. 
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! Eq. 10-7.     ! Eq. 10-8.       ! Eq. 10-9. 
The next formula specifies the coupling capacitor between resonators.   The formula mirrors that used with 
LC parallel tuned circuits except for the correction factor S.   This S factor has the effect of increasing the 
coupling C by almost 1000 times over that of an LC.   This is, after some thought, reasonable.    The 
physical resonator consists of the very small motional C and the much larger nodal capacitance P.  The 
voltage across P will be reduced by S, so the coupling capacitance must be increase by S to produce the 
same coupled current into an adjacent shorted note.   The same argument is applied to achieve the parallel 
resistance, RP, that loads the end resonators.    RP is the resistance that must parallel an end resonator to 
establish the needed end Q.   First, the coupling capacitance is calculated. 

! Eq. 10-10. 
In spite of the large correction factor S, the coupling capacitance is only 0.3 pF.    The correction factor has 
similar impact upon the end capacitors in calculating RP.    First we pick an end termination. 

!  

! Eq. 10-11.  
A parallel capacitance is also calculated that is the C presented to the end resonator.   This is needed to 
calculate tuning values. 

! Eq. 10-12 
We now have the end capacitor that couples to the 500 Ohm load.   The final step is to calculate the 
capacitance that must be added to each node to establish the final resonant frequency.     We use Cend in this 
calculation even though a parallel equivalent would be proper.  Cp and Cend are very close in value. 

  ! Eq. 10-13.           ! Eq. 10-14. 
The final filter circuit is  

!  
Fig 10-3. 
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!  
Fig 10-4.   Response for a 300 Hz wide USB Ladder Crystal Filter at 5 MHz. 
The bandwidth was increased to 1 kHz with this filter, resulting in the following plot. 

!  
Fig 10-5.   Response for a 1 kHz bandwidth filter.   The upper sideband shape now becomes evident. 

The N=2 Lower Sideband Ladder crystal filter was presented in section 8.   The filters designed there had a 
nearly symmetrical shape.   There was an expected lower sideband emphasis, but it was slight.     This is 
not true in the filter of Fig 10-5.   Study of the component values offers a hint. (Values are shown in the 
gray box on the right side of the figure.)   The coupling capacitor attached to the termination is larger than 
the others by a considerable margin.   This is the proper coupling to set the end section Q, but it also 
restricts the range available for filter center frequency.   The shape is distorted by the behavior of the 
“inductor” arm of the composite resonator where the reactance changes significantly with frequency, even 
over the bandwidth of the filter.    If the arm consisting of Lm and Cm was a pure inductor,  it would have 
virtually constant reactance over the bandwidth.     The question remains:   What can be done to achieve 
better filter response symmetry? 

The LSB Ladder was designed with a constraint of a minimum termination value.    If the termination was 
not above a threshold, the filter could not be designed with the simple circuit desired.    The USB has 
greater flexibility, but is still constrained.    Note the very high RF resistance value of Eq. 10-9.   If we 
increase the termination value, R0,  the coupling capacitor drops and the filter can be designed for a 
higher center frequency.     This effect is illustrated with a slightly altered design.    We expanded the 
bandwidth from 300 to 400 Hz, but kept the filter at 5 MHz with the same crystals.   However, the 
termination is increased to 2000 Ohms.    Four different filter center frequencies are then used:  1, 2, 3, and 
5 kHz above crystal series resonance.     
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!   !  

!   !  
Fig 10-6.    Crystal filters with two crystals, with increased termination resistance, which extends the center 
frequency range and allows construction of filters with improved response symmetry. 

11.   An Upper Sideband Ladder Crystal Filter with N=4 at 10 MHz. 

The filters considered so far have all been at 5 MHz.   We now switch to 10 MHz to further investigate 
some of the behavior of the USB Ladder topology.   The initial data for a 1 kHz bandwidth filter, including 
the Butterworth k and q data, are presented. 

!  
We begin the design with a calculation of the parallel resonant frequency. 

! Eq. 11-1.   
The parallel resonance is 19 kHz above the series for this crystal, leaving more room than was available 
with the 5 MHz crystals.   We pick an initial filter center frequency 6 kHz above series.   The filter 
schematic is shown below, followed by the angular frequencies. 

!  
Fig 11-1.   All crystals are assumed to be identical. 
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! Eq 11-2.   ! Eq 11-3.    ! Eq 11-4. 

The data is now available to calculate the nodal capacitance, 

! Eq. 11-5. 

! Eq. 11-6. 
The resonator loading details follow. 

! Eq. 11-7.              ! Eq 11-8.     

The coupling capacitors are calculated next. 

! Eq 11-9.    ! Eq. 11-10.   ! Eq 11-11. 
End loading details follow, including the capacitance reflected back to the resonator from the load when 
coupled to the load through a series C.    (Note that Ce and CP are nearly the same.)   Set R0=400. 

! Eq 11-12.       ! Eq 11-13.      ! Eq 11-14. 
Tuning capacitors can now be calculated. 

! Eq 11-15. 

! Eq 11-16. 

! Eq 11-17. 

! Eq 11-18. 

We now consider a variety of initial conditions.     
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!  
Fig 11-2.   The design filter, 1 kHz bandwidth with center frequency 6 kHz above series resonance, is 
shown in red.   The black response is the result of changing the center frequency to 3 kHz above series.  
The low frequency skirt gets steeper as fC approaches FS while the upper skirt becomes less steep. 

!  
Fig 11-3.   This is a more extreme example of moving center frequency toward the series resonance.   

The next figure expands the bandwidth to 3 kHz, suitable for SSB applications.   Performance is further 
degraded.     Two center frequencies were used:   3 and 5 kHz above series crystal resonance. 
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!  
Fig 11-4.    

The result was disappointing.   However, at this point we recall the results obtained with the N=2 USB 
crystal filter.    Increasing the terminating resistance values provided greater flexibility in the choice of 
center frequency while also improving response shape symmetry.     Increasing the termination from 400 to 
2000 ohms will make a profound difference and provide greater flexibility 

The response shown below illustrates this greater flexibility.    Another SSB filter was designed, this one 
with a much higher termination.   The center frequency was moved up to 8 kHz above crystal series 
resonance.    Performance is now much better.      A companion LSB ladder filter was designed, providing a 
comparison between the topologies.  Both had a 3 kHz BW with the same 10 MHz crystals.   The LSB 
filter is a routine design with 800 Ohm terminations while the USB circuit was designed with a load of 
8400 ohms.    The two filters are nearly mirror images of each other.    Moving the USB filter center 
frequency down would lead to filters nicely spaced around a single BFO, the requirement for ISB, or 
Independent Sideband reception. 

!  
Fig 11-5.   Comparison between LSB and USB filters, 3 kHz bandwidth. 

The schematic diagrams for both filters are shown below. 
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!  
Fig 11-6.     Lower Sideband Ladder, 3 kHz Bandwidth. 

!  
Fig 11-7.   Upper Sideband Ladder, 3 kHz Bandwidth. 

Consider the component values in both filters.   First, the very large (almost 3600 pF) series tuning 
capacitors in the LSB ladder can probably be replaced with a short circuit with little change in 
performance.   All other components in that filter are very manageable in value.    

The USB filter is not as friendly.   We see several very small valued parts, which are difficult.  Not only are 
such parts rarely available in discrete form, but the low value exacerbates the impact of stray capacitance.  
The high termination that was picked is possible, but messy.      The end 32 pF capacitors (components 
marked with “d” on the schematic are duplicates of others in the circuit) would normally cause tuning 
problems, but do not detune the filter owing to the high terminating impedance.    

12.  Crystal Notch Filters 

Although unusual, the crystal notch filter can be a handy circuit for both communications and measurement 
applications.   Simple filters of this sort are easily designed starting with Fig 12-1. 

!  
Fig 12-1.   Evolution of a crystal notch ladder filter. 

The simplest notch circuit places a crystal as a parallel notch element in a 50 Ohm system as shown in Fig 
12-1A.   The depth of the notch can be surprisingly good, depending upon the crystal unloaded Q.   Indeed, 
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this is the basis of a method for the measurement of crystal Q.   If the parameters describing the 5 MHz 
crystal used in many other filters in this note are used here, a single crystal produces a notch with a 5.1 dB 
depth.   The 5 MHz crystal assumed here has a motional L of 0.1 Henry, C0=3.3 pF, and QU=100,000.  
Additional crystals can be added in parallel with the original to produce a slight improvement.   The circuit 
of Fig 12-1B produces a 10.6 dB notch depth with the same crystals.   Several crystals in parallel serve to 
alter the equivalent circuit of the original, resulting in the behavior of one altered crystal.    

Three crystals are decoupled from each other if they are separated with a circuit providing 90 degrees of 
phase difference.   This is realized with a quarter wavelength of transmission line or with an equivalent 
CLC  π network where the reactance each of the elements is the characteristic resistance terminating 
resistance of the ladder.   This is illustrated in Fig 12-1C.   The 50 ohm elements at 5 MHz would be C=637 
pF and L=1.59 µH.   This circuit produces a notch depth of 18 dB.   Further enhancement results if the 
terminating resistance is altered as shown in Figures 12-2 and 12-3. 

!  
Fig 12-2.   A notch filter with three crystals in a 200 Ohm environment. 

!  Fig 12-3.  The response of the 
circuit in Fig 12-2.   The notch depth is now 45 dB.     Notice that the π network components change with 
the new termination.     An 800 Ohm system yield a notch depth of 79 dB, still with just 3 crystals.   Added 
crystals will produce even deeper notches with more phase shifting networks between them. 
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14.  Appendix A:   Equations with calculation results.   The numbers correspond to 
sections in the main text.  This appendix shows numeric results related to the examples. 

A4.  L/C DTC with parallel resonators. 

!   !   !   !    

!   !   !  

!   !   !   !  

A5.  L/C  n=4 with parallel resonators. 

!   !    !  

!   !   !  
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!   !   !  

!   !   !   

!   !  

A6.  DTC  L/C with series resonators. 

!    !   !  !  

!   !   !  

A7.  n=4 L/C with series resonators. 

!   !   !  !  

!   !   !   !  

!   !   !  !  
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A8.   n=2 Crystal Filter, LSB Ladder, Series Crystals. 

!   !   !  

!   !   !  

!   !   !  

!  

A9.    n=4 LSB Ladder Crystal Filter, Series Crystals. 

!  !   !   !  

! !  !   !  
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!  !  !   

!   !  !   !    

!   !   !  !  

A10.   n=2 USB Ladder Crystal Filter, Parallel Crystals.  

 !   !   !   !    

!   !   !   !   

!   !   !   !   

!   !    
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A11.  N=4 USB Crystal Ladder, Parallel Crystals. 

!  !  !  !  

!  !  !  !   

! ! !   

!  !  !   

! !  !   

!  

Appendix B.  gm to km and qm.   Converting Normalized Low Pass Component 
Values to Normalized Coupling and End Loading Parameters. 

Most bandpass filters are designed with normalized k and q parameters.   As mentioned in 
the early part of this report, these parameters are related to the low pass prototype filters.   
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Here we present equations that will make this format transformation for two popular filter 
polynomials, the Butterworth and the Chebyshev.   

The calculations to make this transformations are generally straight forward.  There are, 
however, some subtle details that can complicate the calculations if they are not 
appreciated.    The first has to do with the frequency used in defining the normalized filter 
components for Chebyshev filters.   Classic equations, including those presented in 
reference 5 (IRFD, pp 62-65) calculate the components on the basis of a ripple cutoff 
frequency.   Assume a Chebyshev low pass has a peak to peak ripple of 1 dB.   The 
highest frequency in the passband where the attenuation is 1 dB is then the ripple cutoff 
frequency.   But we want to design our filters using 3 dB cutoff.    The two cutoff values 
are related by a factor W.    Normalized component values, gm, based upon ripple cutoff 
are converted to those based upon a 3 dB cutoff merely by multiplying by W. 

Butterworth filters are simpler than the Chebyshev, for the 3 dB defined parameters are 
the same as a ripple cutoff based set.   In the equations to follow, merely set W=1 for a 
Butterworth low pass prototype filter.   Similarly, when starting with prototype values 
that are already normalized to a 3 dB cutoff, such as any of the data in Zverev (ref. 1), 
merely set W=1 in the following equations. 

The other subtle detail is unique to Chebyshev filters with an even order.    These filters 
have a low pass prototype with n components where n is an even number and are 
terminated in a normalized source resistance that is not 1, which is the usual load 
resistance.    Typical odd order filters are simpler with equal terminations.   To add further 
mystery, even order Chebyshev filters end up with equal normalized end Q when the 
corresponding low pass prototypes have unequal terminations.    (Not all filter shapes 
have equal normalized Q at the ends.   An example of this is the transitional filters such 
as the Gaussian-to-6 dB.)    

With these details in mind, a normalized coupling coefficient, km, is calculated with 

!  
Reiterating, the normalized frequency W is set to 1 for a Butterworth filter, or for a 
Chebyshev when the normalized components gm and gp are given as 3 dB based values.  
Note that k has the form of a resonant frequency between adjacent elements in a low pass 
prototype filter.    An example might be the beginning end of a n=5 Chebyshev filter with 
a ripple of 0.1 dB.   This filter has W=1.1347 using analysis presented below.    If we 
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consider the first and second element while using ripple cutoff based components, 
g1=1.1468 and g2=1.3712.   The result is k=0.7028.   While this is specified as k1, we 
more often see this specified as k12. 

The end section normalized q values are 

!  
Note the simplicity; the end section q values equal the end component values when they 
are defined on a 3 dB basis.   Using the previous example of a 5th order 0.1 dB 
Chebyshev, q1=1.3013, which is also q5.    For this odd order Chebyshev, rs=1.     

The ratio of the 3 dB cutoff to the ripple cutoff begins with  

!  
where  A is the peak to peak ripple in dB.   E is the ripple as a power ratio.   An 
intermediate variable Y is then  

!  
where E is defined above and n is the filter order.    This leads to ʘ, which will become 
our frequency ratio.    

!  
ʘ is merely a dummy variable at this point.   It is convenient to be able to set W= ʘ for 
the Chebyshev filters. 

The source resistance for even ordered Chebyshev filters is calculated with 

!  
x and d are essentially dummy variables leading to a normalized source resistance s.   For 
the even order Chebyshev case, we set rs=s in order to calculate q1. 
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